Vertebral Fracture/Luxation

- Mark Newman
- University of Sydney
- Melbourne Resident’s Forum 2014
Spinal Biomechanics

- Vertebral motion unit
 - Osseous and soft tissue contributors to stability
- Fractures tend to occur at junction of immobile/mobile areas
 - Resistance of bending forces of vertebral bodies
 - Lowest around T9 and rising to L2
 - Rising bone mineral density
 - Adaptation to bending stress
Spinal Biomechanics

- **Forces acting on the spine**
 - Dorsoventral bending (disc, vertebral body, dorsal elements)
 - Lateral bending (disc, facets, vertebral body, rib head)
 - Torsion (disc, facets, rib head)
 - Shear
 - Axial compression (disc, vertebral endplates)
- **Relative contribution of each force in normal movement unknown**
 - Disc most important in bending and rotation (Schulz et al AJVR 1996, Shires et al Prog Vet Neurol 1991)
Anatomical Influence

- Thoracic spine
 - Inherently stable
 - Small articular facets but large dorsal structures
- Thoracolumbar junction (50% of VFL)
 - Highly mobile
 - Large facets
 - Facets change orientation from ventrodorsal to saggital
- Lumbar spine (25-30% of VFL)
 - Relatively rigid
 - Dorsoventral flexion
3 Column Model (Dennis Spine 1983)
3 Column Model (Dennis Spine 1983)

- **Dorsal column**
 - Articular facets, laminae, dorsal spinous processes, interspinous ligaments, ligamentum flavum

- **Middle column**
 - Dorsal longitudinal ligament, dorsal annulus fibrosis, dorsal vertebral cortex

- **Ventral column**
 - Ventral longitudinal ligament, remainder of intervertebral disc, ventral vertebral cortex
3-Column Model – Fracture Configurations

- Compression
 - Failure of the ventral column under compression
 - Intact middle column acts as the hinge
 - Flexion injury
3-Column Model – Fracture Configurations

- **Burst**
 - Failure of vertebral body (ventral and middle columns) under compression
 - Dorsal column is the hinge
 - Flexion injury
3-Column Model – Fracture Configurations

- **Seat-Belt**
 - Failure of dorsal and middle columns under tension
 - Ventral column may also be involved but maintains role as the hinge
3-Column Model – Fracture Configurations

- Fracture-Dislocation
 - Failure of all columns
 - A: flexion/rotation
 - B: shear (hyperextension)
 - C: flexion/distraction
3 Compartment Model (Sharp & Wheeler)

- 3-column model
 - Based on mode of injury (stability inferred)
 - Indications for surgery in humans different to quadripeds
- Assesses ability of vertebral column to resist applied forces
- Addresses integrity of:
 - Intervertebral disc
 - Vertebral body
 - Articular facets
- Serves as a guide to the fixation best suited to each fracture
3 Compartment Model (Sharp & Wheeler)

- I – Disc failed, facets and body intact
 - Rotation, lateral bending, extension
- II – Facets failed, disc and body intact
 - Rotation
- III – Body failed, facets and disc intact
 - Bending, compression
- IV – Two or more components fail
 - Generally all forces
Imaging

- Plain radiology (Kinns et al Vet Rad Ultrasound 2006)
 - 72% sensitivity for fractures
 - 77.5% sensitivity for luxations
 - 58% NPV for canal narrowing
 - 52% NPV for fragments in canal
 - Poor for fractures involving dorsal/middle compartments
Imaging

- Significance of displacement
 - Not associated with outcome (McKee et al Vet Rec 1990) unless 100% (Bagley Vet Clin North Am 2000)
 - Displacement + axis deviation significantly associated with outcome in dogs (Bali et al VCOT 2009)
Advanced Imaging

- CT gives greatest bone detail
 - Safe implant corridors
- MRI
 - Cord compression
 - Disc extrusion
 - Signal change – T2W hyperintensity
 - Correlation with outcome
 - Levine et al JVIM 2009
Treatment

- Prevent ongoing injury
 - Limit instability
- Relieve spinal cord compression
 - Realign spinal canal
 - Apposition or near-apposition
 - Intervertebral disc
 - Hemilaminectomy?
- Fragments
 - Human studies suggest unnecessary
 - Must retropulsed and resorbed
Conservative Therapy

- Non-surgical management
 - Indications poorly defined – ‘stable’ fractures
 - Isolated facet fractures or disc extrusions
 - Some body fractures
- Difficult to immobilise thoracolumbar spine
 - Patterson & Smith VCOT 1992
- Selcer et al JAVMA 1991
 - Shorter hospitalisation
 - Longer recovery
 - Surgically treated animals improved more but no difference in eventual long term outcome
Surgical Management

- Ventral stabilisation
 - Pins or screws/PMMA
 - Plates
 - ESF

- Dorsal Stabilisation
 - Spinous process plating
 - Tension band/modified segmental spinal fixation
 - Laminar plating
Implant Corridors

- Watine et al JSAP 2006
 - Thoracic vertebrae
 - Insertion angle opens from 22° to 44.5°
 - Azygous vein 1mm away
 - Lumbar vertebrae
 - Insertion angle 60°
 - Vital structures more protected
Pin Penetration of the Canal

- Hettlich et al Vet Surg 2010
- Left/right accuracy 93.1%

Radiographs
- Sensitivity 50%
- Specificity 83%

CT
- Sensitivity 93.4%
- Specificity 86%
Pins + PMMA

- Versatile
- Strong in flexion, extension, torsion
 - At least that of intact spine (Walker et al Vet Surg 2002)
 - Depends on configuration (David Hall, pers comm)
- Threaded pins preferred
 - Less pull-out
 - Less migration
 - Firm anchorage of cement
- 3+ implants per vertebra, screws inferior to pins
 - Garcia et al Vet Surg 1994
Vertebral Body Plating

- Swaim JAVMA 1971
 - Technical feasibility of small dorsolateral body plates on adjacent vertebrae
 - Recommended sacrificing nerve roots
- Clinical use substantiated
 - Downes et al JSAP 2009
- Conventional plates superseded by locking plates?
 - SOP (McKee & Downes JSAP 2006)
 - PAX?
Internal Fixation Systems

- Walter et al Vet Surg 1986
 - Dorsal + vertebral body plate strongest followed by vertebral body plate

- Waldron et al Prog Vet Neurol 1991
 - Pins + PMMA strongest
External Skeletal Fixation

- Blunt tipped pins ideal + arches
- Open
 - Lanz et al Vet Neurology Neurosurgery 2009
 - 3 dogs – good reduction with no complications
 - Poor follow-up
- Closed
 - 5 dogs – good to excellent function in all
 - Fixators in place up to 282 days
External Skeletal Fixation

- Open vs closed
 - Wheeler et al Vet Surg 2002
 - Both open and closed application different from the ideal angle/depth
 - Better bone purchase in closed
 - Difficult to apply to thoracic especially open

- Strength - Walker et al Vet Surg 2002
 - Eight pin/arch combo stiffer than bilateral type I ESF
 - Comparable to Eight pin/PMMA combo
Modified Segmental Spinal Stabilisation

- Longitudinal Steinmann pins held in place with wire through spinous processes
- McAnulty et al, Vet Surg 1986
 - 4 dogs 10-56 kg, all unstable fractures
 - 1 broken pin at 18 months
- Not recommended?
 - Wire pull-out
 - No ventral support
 - Suited to thoracic fractures
Tension Band Fixation

- Voss & Montavon JAVMA 200
 - Modification of MSSS
- 38 dogs/cats up to 45kg
- Unstable fractures
 - Vertebral body involvement
- 78% complete or functional
- 11% implant or fixation failure
 - Dogs >16kg
Laminar Plating

- Benefit of dorsal stabilisation
- Potentially more cortices
- Knell et al AJVR 2011
 - Lower ROM and NZ than vertebral body plating
 - VBP constructs: bone failure at facet joints
 - LP constructs: construct failure
 - Less screw loosening in LP (1/9) than VBP (5/9)
Laminar Plating

- Knell et al AJVR 2011
- Angles of insertion L1/L2
 - Lamina = approx 20° ventral, 10° dorsal
 - Facet = 24° ventral, 12° dorsal
- Screw penetration 1/24
 - Screw did not follow drill hole
Spinous Plating

- **Krauss et al VCOT 2012**
 - Similar function to tension band stabilisation
 - 15 unstable fractures
 - 80% complete or functional outcome
 - No implant failure
 - Spinous process demineralisation

- **Rischen et al Vet Surg 1987**
 - No change in underlying vascularity
 - Demineralisation by 8 weeks
 - Foreign body reaction
Prognosis

- **Surgical technique**
 - Results seem fairly comparable across techniques
 - 80-100%
 - Complication rates vary
- **Significance of absent nociception**
 - Very poor recovery rates – avg 5%
 - Spinal walking – rim of peripheral surviving tracts?
References

